Analysis Beispiele

Löse die Differntialgleichung. (1/y)dx-(3y-x/(y^2))dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Schreibe als um.
Schritt 1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Addiere und .
Schritt 2.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.7
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Mutltipliziere mit .
Schritt 2.7.2
Mutltipliziere mit .
Schritt 2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.9
Mutltipliziere mit .
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 4
Bestimme den Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze durch .
Schritt 4.2
Ersetze durch .
Schritt 4.3
Ersetze durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Mutltipliziere mit .
Schritt 4.3.3.2
Mutltipliziere mit .
Schritt 4.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Ersetze durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.6.1
Faktorisiere aus heraus.
Schritt 4.3.6.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.6.3
Forme den Ausdruck um.
Schritt 4.4
Bestimme den Integrationsfaktor .
Schritt 5
Berechne das Integral .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Das Integral von nach ist .
Schritt 5.3
Vereinfache.
Schritt 5.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.4.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.4.3
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 6
Multipliziere beide Seiten von mit dem Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.3
Forme den Ausdruck um.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Wende das Distributivgesetz an.
Schritt 6.5
Mutltipliziere mit .
Schritt 6.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1
Mutltipliziere mit .
Schritt 6.6.2
Mutltipliziere mit .
Schritt 6.7
Wende das Distributivgesetz an.
Schritt 6.8
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.8.1
Bewege .
Schritt 6.8.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.8.2.1
Potenziere mit .
Schritt 6.8.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.8.3
Addiere und .
Schritt 6.9
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.9.1
Kürze den gemeinsamen Faktor.
Schritt 6.9.2
Forme den Ausdruck um.
Schritt 7
Setze gleich dem Integral von .
Schritt 8
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Wende die Konstantenregel an.
Schritt 9
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 10
Setze .
Schritt 11
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Differenziere nach .
Schritt 11.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.3.3
Mutltipliziere mit .
Schritt 11.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 11.5
Stelle die Terme um.
Schritt 12
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.2.1
Subtrahiere von .
Schritt 12.1.2.2
Addiere und .
Schritt 13
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Integriere beide Seiten von .
Schritt 13.2
Berechne .
Schritt 13.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 13.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.5.1
Schreibe als um.
Schritt 13.5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.5.2.1
Kombiniere und .
Schritt 13.5.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 14
Setze in ein.
Schritt 15
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Kombiniere und .
Schritt 15.2
Bringe auf die linke Seite von .