Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)+y/5=0
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.3
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Wende die Konstantenregel an.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Kombiniere und .
Schritt 3.3.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 4
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Stelle und um.
Schritt 4.3
Kombiniere Konstanten mit Plus oder Minus.