Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Das Integral von nach ist .
Schritt 2.3.6
Vereinfache.
Schritt 2.3.6.1
Vereinfache.
Schritt 2.3.6.2
Kombiniere und .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.2
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.