Analysis Beispiele

Löse die Differntialgleichung. (dx)/(dt)=1+t-x-tx
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.1.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.1.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.3
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Forme um.
Schritt 2.2.1.1.2
Dividiere durch .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Zerlege den Bruch in mehrere Brüche.
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Das Integral von nach ist .
Schritt 2.2.5
Vereinfache.
Schritt 2.2.6
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Wende die Konstantenregel an.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Vereinfache.
Schritt 2.3.5
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.1.2.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1.1
Bringe die negative Eins aus dem Nenner von .
Schritt 3.1.3.1.2
Schreibe als um.
Schritt 3.1.3.1.3
Kombiniere und .
Schritt 3.1.3.1.4
Bringe die negative Eins aus dem Nenner von .
Schritt 3.1.3.1.5
Schreibe als um.
Schritt 3.1.3.1.6
Bringe die negative Eins aus dem Nenner von .
Schritt 3.1.3.1.7
Schreibe als um.
Schritt 3.2
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.3
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe die Gleichung als um.
Schritt 3.4.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.4.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.4.4.2.2
Dividiere durch .
Schritt 3.4.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.4.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.4.3.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.3.3.1
Mutltipliziere mit .
Schritt 3.4.4.3.3.2
Mutltipliziere mit .
Schritt 3.4.4.3.3.3
Mutltipliziere mit .
Schritt 3.4.4.3.3.4
Mutltipliziere mit .
Schritt 3.4.4.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.4.3.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.3.5.1
Bringe auf die linke Seite von .
Schritt 3.4.4.3.5.2
Schreibe als um.
Schritt 3.4.4.3.5.3
Mutltipliziere mit .
Schritt 3.4.4.3.6
Dividiere durch .
Schritt 4
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die Konstante der Integration.
Schritt 4.2
Schreibe als um.
Schritt 4.3
Stelle und um.
Schritt 4.4
Kombiniere Konstanten mit Plus oder Minus.