Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Differenziere.
Schritt 2.3.1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.1.1.4
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Das Integral von nach ist .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.