Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=3x^-5+4x^-1 , y(1)=3
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Kombiniere und .
Schritt 2.3.4.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.6
Das Integral von nach ist .
Schritt 2.3.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.7.1
Vereinfache.
Schritt 2.3.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.1.4
Der natürliche Logarithmus von ist .
Schritt 4.2.1.5
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3.3
Kombiniere und .
Schritt 4.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.5.1
Mutltipliziere mit .
Schritt 4.3.5.2
Addiere und .
Schritt 5
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze durch .
Schritt 5.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.2
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.