Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.6
Kombiniere und .
Schritt 2.3.7
Wende die Konstantenregel an.
Schritt 2.3.8
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache .
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.1.4
Multipliziere .
Schritt 4.2.1.4.1
Mutltipliziere mit .
Schritt 4.2.1.4.2
Mutltipliziere mit .
Schritt 4.2.1.5
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.1.6
Mutltipliziere mit .
Schritt 4.2.1.7
Mutltipliziere mit .
Schritt 4.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.2.2.1
Addiere und .
Schritt 4.2.2.2
Addiere und .
Schritt 4.2.2.3
Addiere und .
Schritt 4.2.2.4
Addiere und .
Schritt 5
Schritt 5.1
Ersetze durch .
Schritt 5.2
Vereinfache jeden Term.
Schritt 5.2.1
Kombiniere und .
Schritt 5.2.2
Kombiniere und .
Schritt 5.2.3
Kombiniere und .