Analysis Beispiele

Löse die Differntialgleichung. x((dy)/(dx))=y+2xe^(-y/x)
Schritt 1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.1.2
Dividiere durch .
Schritt 1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.1.2
Dividiere durch .
Schritt 2
Es gilt . Ersetze für .
Schritt 3
Löse nach auf.
Schritt 4
Verwende die Produktregel um die Ableitung von nach zu finden.
Schritt 5
Ersetze durch .
Schritt 6
Löse die substituierte Differentialgleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.1.1.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1.2.1
Subtrahiere von .
Schritt 6.1.1.1.2.2
Addiere und .
Schritt 6.1.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.1
Teile jeden Ausdruck in durch .
Schritt 6.1.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.1.2.2.1.2
Dividiere durch .
Schritt 6.1.2
Multipliziere beide Seiten mit .
Schritt 6.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Kombinieren.
Schritt 6.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.3.2.2
Forme den Ausdruck um.
Schritt 6.1.3.3
Mutltipliziere mit .
Schritt 6.1.4
Schreibe die Gleichung um.
Schritt 6.2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Integriere auf beiden Seiten.
Schritt 6.2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 6.2.2.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.2.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.2.2.1.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.2.1.2.1
Mutltipliziere mit .
Schritt 6.2.2.1.2.1.2.2
Mutltipliziere mit .
Schritt 6.2.2.1.2.2
Mutltipliziere mit .
Schritt 6.2.2.2
Das Integral von nach ist .
Schritt 6.2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.3.2
Das Integral von nach ist .
Schritt 6.2.3.3
Vereinfache.
Schritt 6.2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 6.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 6.3.2
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 6.3.2.2
Der natürliche Logarithmus von ist .
Schritt 6.3.2.3
Mutltipliziere mit .
Schritt 6.3.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 6.3.4
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 7
Ersetze durch .
Schritt 8
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Multipliziere beide Seiten mit .
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.1.2
Forme den Ausdruck um.
Schritt 8.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Stelle die Faktoren in um.