Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Vereinfache die Lösung.
Schritt 2.2.3.1
Schreibe als um.
Schritt 2.2.3.2
Vereinfache.
Schritt 2.2.3.2.1
Kombiniere und .
Schritt 2.2.3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.3.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.3.2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.2.2.3
Forme den Ausdruck um.
Schritt 2.2.3.2.2.2.4
Dividiere durch .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Schreibe als um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Schritt 3.1.3.1
Vereinfache jeden Term.
Schritt 3.1.3.1.1
Kombiniere und .
Schritt 3.1.3.1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.1.3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.3.1.4
Multipliziere .
Schritt 3.1.3.1.4.1
Mutltipliziere mit .
Schritt 3.1.3.1.4.2
Mutltipliziere mit .
Schritt 3.1.3.1.4.3
Mutltipliziere mit .
Schritt 3.1.3.1.4.4
Mutltipliziere mit .
Schritt 3.1.3.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3
Vereinfache .
Schritt 3.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.2
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 3.3.2.1
Mutltipliziere mit .
Schritt 3.3.2.2
Mutltipliziere mit .
Schritt 3.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.4
Mutltipliziere mit .
Schritt 3.3.5
Schreibe als um.
Schritt 3.3.5.1
Faktorisiere die perfekte Potenz aus heraus.
Schritt 3.3.5.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 3.3.5.3
Ordne den Bruch um.
Schritt 3.3.6
Ziehe Terme aus der Wurzel heraus.
Schritt 3.3.7
Kombiniere und .
Schritt 3.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.