Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Faktorisiere aus heraus.
Schritt 1.2.3
Faktorisiere aus heraus.
Schritt 1.3
Multipliziere beide Seiten mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1.1
Faktorisiere aus heraus.
Schritt 1.4.1.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.1.3
Forme den Ausdruck um.
Schritt 1.4.2
Wende das Distributivgesetz an.
Schritt 1.4.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.4
Bringe auf die linke Seite von .
Schritt 1.4.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.4.5.1
Bewege .
Schritt 1.4.5.2
Mutltipliziere mit .
Schritt 1.4.5.2.1
Potenziere mit .
Schritt 1.4.5.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.5.3
Addiere und .
Schritt 1.5
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Wende die grundlegenden Potenzregeln an.
Schritt 2.2.1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2.1.2
Multipliziere die Exponenten in .
Schritt 2.2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Schreibe als um.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.6
Vereinfache.
Schritt 2.3.6.1
Vereinfache.
Schritt 2.3.6.2
Vereinfache.
Schritt 2.3.6.2.1
Kombiniere und .
Schritt 2.3.6.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.6.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.2.2.2
Forme den Ausdruck um.
Schritt 2.3.6.2.3
Mutltipliziere mit .
Schritt 2.3.6.2.4
Kombiniere und .
Schritt 2.3.6.2.5
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.6.2.5.1
Faktorisiere aus heraus.
Schritt 2.3.6.2.5.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.6.2.5.2.1
Faktorisiere aus heraus.
Schritt 2.3.6.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.2.5.2.3
Forme den Ausdruck um.
Schritt 2.3.6.2.5.2.4
Dividiere durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.1.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.2.1
Multipliziere jeden Term in mit .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3
Forme den Ausdruck um.
Schritt 3.3
Löse die Gleichung.
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Faktorisiere aus heraus.
Schritt 3.3.2.1
Faktorisiere aus heraus.
Schritt 3.3.2.2
Faktorisiere aus heraus.
Schritt 3.3.2.3
Faktorisiere aus heraus.
Schritt 3.3.2.4
Faktorisiere aus heraus.
Schritt 3.3.2.5
Faktorisiere aus heraus.
Schritt 3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.3.2
Vereinfache die linke Seite.
Schritt 3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.2.1.2
Dividiere durch .
Schritt 3.3.3.3
Vereinfache die rechte Seite.
Schritt 3.3.3.3.1
Ziehe das Minuszeichen vor den Bruch.