Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Schritt 1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.2
Kombiniere und .
Schritt 1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Vereinfache den Ausdruck.
Schritt 2.2.1.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 2.2.1.2
Vereinfache.
Schritt 2.2.1.2.1
Multipliziere die Exponenten in .
Schritt 2.2.1.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.2.1.2
Multipliziere .
Schritt 2.2.1.2.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Vereinfache.
Schritt 2.3.3.2.1
Kombiniere und .
Schritt 2.3.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2.2.2
Forme den Ausdruck um.
Schritt 2.3.3.2.3
Mutltipliziere mit .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.2
Multipliziere die linke Seite aus.
Schritt 3.2.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.2.2
Der natürliche Logarithmus von ist .
Schritt 3.2.3
Mutltipliziere mit .