Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Schritt 1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.2
Kombiniere und .
Schritt 1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Wende die grundlegenden Potenzregeln an.
Schritt 2.2.1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2.1.2
Multipliziere die Exponenten in .
Schritt 2.2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.2.2
Kombiniere und .
Schritt 2.2.1.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Kombiniere und .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Schritt 3.1.3.1
Vereinfache jeden Term.
Schritt 3.1.3.1.1
Kombiniere und .
Schritt 3.1.3.1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.1.3.1.3
Kombinieren.
Schritt 3.1.3.1.4
Mutltipliziere mit .
Schritt 3.1.3.1.5
Mutltipliziere mit .
Schritt 3.2
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3
Vereinfache den Exponenten.
Schritt 3.3.1
Vereinfache die linke Seite.
Schritt 3.3.1.1
Vereinfache .
Schritt 3.3.1.1.1
Multipliziere die Exponenten in .
Schritt 3.3.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.1.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.1.1.2
Vereinfache.
Schritt 3.3.2
Vereinfache die rechte Seite.
Schritt 3.3.2.1
Vereinfache .
Schritt 3.3.2.1.1
Schreibe als um.
Schritt 3.3.2.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.3.2.1.2.1
Wende das Distributivgesetz an.
Schritt 3.3.2.1.2.2
Wende das Distributivgesetz an.
Schritt 3.3.2.1.2.3
Wende das Distributivgesetz an.
Schritt 3.3.2.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.3.2.1.3.1
Vereinfache jeden Term.
Schritt 3.3.2.1.3.1.1
Kombinieren.
Schritt 3.3.2.1.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.2.1.3.1.2.1
Bewege .
Schritt 3.3.2.1.3.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.2.1.3.1.2.3
Addiere und .
Schritt 3.3.2.1.3.1.3
Mutltipliziere mit .
Schritt 3.3.2.1.3.1.4
Mutltipliziere mit .
Schritt 3.3.2.1.3.1.5
Kombinieren.
Schritt 3.3.2.1.3.1.6
Mutltipliziere mit .
Schritt 3.3.2.1.3.1.7
Kombinieren.
Schritt 3.3.2.1.3.1.8
Mutltipliziere mit .
Schritt 3.3.2.1.3.1.9
Bringe auf die linke Seite von .
Schritt 3.3.2.1.3.1.10
Multipliziere .
Schritt 3.3.2.1.3.1.10.1
Mutltipliziere mit .
Schritt 3.3.2.1.3.1.10.2
Potenziere mit .
Schritt 3.3.2.1.3.1.10.3
Potenziere mit .
Schritt 3.3.2.1.3.1.10.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.2.1.3.1.10.5
Addiere und .
Schritt 3.3.2.1.3.1.10.6
Mutltipliziere mit .
Schritt 3.3.2.1.3.2
Addiere und .
Schritt 3.3.2.1.3.2.1
Bewege .
Schritt 3.3.2.1.3.2.2
Addiere und .
Schritt 3.3.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.4.1
Faktorisiere aus heraus.
Schritt 3.3.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.4.3
Forme den Ausdruck um.
Schritt 4
Vereinfache die Konstante der Integration.