Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Das Integral von nach ist .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 4.2.1.2
Der genau Wert von ist .
Schritt 4.2.1.3
Multipliziere .
Schritt 4.2.1.3.1
Mutltipliziere mit .
Schritt 4.2.1.3.2
Mutltipliziere mit .
Schritt 4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.2
Subtrahiere von .
Schritt 5
Schritt 5.1
Ersetze durch .