Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Wende die Konstantenregel an.
Schritt 2.2.4
Vereinfache.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Wende die Konstantenregel an.
Schritt 2.3.5
Vereinfache.
Schritt 2.3.5.1
Kombiniere und .
Schritt 2.3.5.2
Vereinfache.
Schritt 2.3.5.3
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Kombiniere und .
Schritt 3.2
Kombiniere und .
Schritt 3.3
Bringe alle Ausdrücke auf die linke Seite der Gleichung.
Schritt 3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4
Multipliziere mit dem Hauptnenner aus und vereinfache dann.
Schritt 3.4.1
Wende das Distributivgesetz an.
Schritt 3.4.2
Vereinfache.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Forme den Ausdruck um.
Schritt 3.4.2.2
Mutltipliziere mit .
Schritt 3.4.2.3
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.3.3
Forme den Ausdruck um.
Schritt 3.4.2.4
Mutltipliziere mit .
Schritt 3.4.2.5
Mutltipliziere mit .
Schritt 3.4.3
Bewege .
Schritt 3.4.4
Bewege .
Schritt 3.4.5
Stelle und um.
Schritt 3.5
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3.6
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3.7
Vereinfache.
Schritt 3.7.1
Vereinfache den Zähler.
Schritt 3.7.1.1
Potenziere mit .
Schritt 3.7.1.2
Mutltipliziere mit .
Schritt 3.7.1.3
Wende das Distributivgesetz an.
Schritt 3.7.1.4
Vereinfache.
Schritt 3.7.1.4.1
Mutltipliziere mit .
Schritt 3.7.1.4.2
Mutltipliziere mit .
Schritt 3.7.1.4.3
Mutltipliziere mit .
Schritt 3.7.1.5
Faktorisiere aus heraus.
Schritt 3.7.1.5.1
Faktorisiere aus heraus.
Schritt 3.7.1.5.2
Faktorisiere aus heraus.
Schritt 3.7.1.5.3
Faktorisiere aus heraus.
Schritt 3.7.1.5.4
Faktorisiere aus heraus.
Schritt 3.7.1.5.5
Faktorisiere aus heraus.
Schritt 3.7.1.5.6
Faktorisiere aus heraus.
Schritt 3.7.1.5.7
Faktorisiere aus heraus.
Schritt 3.7.1.6
Schreibe als um.
Schritt 3.7.1.6.1
Schreibe als um.
Schritt 3.7.1.6.2
Schreibe als um.
Schritt 3.7.1.7
Ziehe Terme aus der Wurzel heraus.
Schritt 3.7.1.8
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.7.2
Mutltipliziere mit .
Schritt 3.7.3
Vereinfache .
Schritt 3.8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4
Vereinfache die Konstante der Integration.