Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.3
Stelle und um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Vereinfache.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Verwende die Potenzregel des Logarithmus.
Schritt 2.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 2.6
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.7
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 2.8
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 2.9
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Schreibe mithilfe von Sinus und Kosinus um, kürze dann die gemeinsamen Faktoren.
Schritt 3.2.1.1
Versetze die Klammern.
Schritt 3.2.1.2
Stelle und um.
Schritt 3.2.1.3
Füge Klammern hinzu.
Schritt 3.2.1.4
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 3.2.1.5
Kürze die gemeinsamen Faktoren.
Schritt 3.2.2
Schreibe als um.
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Schritt 7.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 7.2.1
Es sei . Ermittle .
Schritt 7.2.1.1
Differenziere .
Schritt 7.2.1.2
Die Ableitung von nach ist .
Schritt 7.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.4
Mutltipliziere mit .
Schritt 7.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7.6
Vereinfache.
Schritt 7.6.1
Schreibe als um.
Schritt 7.6.2
Vereinfache.
Schritt 7.6.2.1
Kombiniere und .
Schritt 7.6.2.2
Kürze den gemeinsamen Faktor von .
Schritt 7.6.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.6.2.2.2
Forme den Ausdruck um.
Schritt 7.6.2.3
Mutltipliziere mit .
Schritt 7.7
Ersetze alle durch .
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Schritt 8.3.1
Vereinfache jeden Term.
Schritt 8.3.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 8.3.1.1.1
Faktorisiere aus heraus.
Schritt 8.3.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 8.3.1.1.2.1
Multipliziere mit .
Schritt 8.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.1.2.3
Forme den Ausdruck um.
Schritt 8.3.1.1.2.4
Dividiere durch .
Schritt 8.3.1.2
Separiere Brüche.
Schritt 8.3.1.3
Wandle von nach um.
Schritt 8.3.1.4
Dividiere durch .