Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Berechne .
Schritt 2.3.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.3.3
Mutltipliziere mit .
Schritt 2.3.1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.4.2
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.5.1
Vereinfache.
Schritt 2.3.5.2
Kombiniere und .
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.3.7
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.2
Addiere und .
Schritt 4.2.1.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 4.2.1.4
Der genau Wert von ist .
Schritt 4.2.1.5
Mutltipliziere mit .
Schritt 4.2.1.6
Multipliziere .
Schritt 4.2.1.6.1
Mutltipliziere mit .
Schritt 4.2.1.6.2
Mutltipliziere mit .
Schritt 4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3.3
Kombiniere und .
Schritt 4.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.5
Vereinfache den Zähler.
Schritt 4.3.5.1
Mutltipliziere mit .
Schritt 4.3.5.2
Subtrahiere von .
Schritt 5
Schritt 5.1
Ersetze durch .
Schritt 5.2
Kombiniere und .