Analysis Beispiele

Löse die Differntialgleichung. (x^2-y^2)dx=2x(yd)y
Schritt 1
Schreibe die Differentialgleichung so um, dass sie der Technik der exakten Differentialgleichung entspricht.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Subtrahiere von .
Schritt 3
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere nach .
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Mutltipliziere mit .
Schritt 4
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze für und für ein.
Schritt 4.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 5
Setze gleich dem Integral von .
Schritt 6
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Schreibe als um.
Schritt 6.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Kombiniere und .
Schritt 6.3.2.2
Kombiniere und .
Schritt 6.3.2.3
Bringe auf die linke Seite von .
Schritt 6.3.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.4.1
Faktorisiere aus heraus.
Schritt 6.3.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.4.2.1
Faktorisiere aus heraus.
Schritt 6.3.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.4.2.3
Forme den Ausdruck um.
Schritt 6.3.2.4.2.4
Dividiere durch .
Schritt 7
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 8
Setze .
Schritt 9
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Differenziere nach .
Schritt 9.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 9.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 9.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9.3.3
Mutltipliziere mit .
Schritt 9.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 9.5
Stelle die Terme um.
Schritt 10
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 10.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.2.1
Addiere und .
Schritt 10.1.2.2
Addiere und .
Schritt 11
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Integriere beide Seiten von .
Schritt 11.2
Berechne .
Schritt 11.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 12
Setze in ein.
Schritt 13
Kombiniere und .