Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Schritt 3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.3
Forme den Ausdruck um.
Schritt 3.3
Kombiniere und .
Schritt 3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Wende die Konstantenregel an.
Schritt 4.3
Integriere die rechte Seite.
Schritt 4.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.2
Sei . Dann ist . Forme um unter Vewendung von und .
Schritt 4.3.2.1
Es sei . Ermittle .
Schritt 4.3.2.1.1
Differenziere .
Schritt 4.3.2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.2.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.2.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.2.1.5
Addiere und .
Schritt 4.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4.3.3
Das Integral von nach ist .
Schritt 4.3.4
Vereinfache.
Schritt 4.3.5
Ersetze alle durch .
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Schritt 5.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.2.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Schritt 5.3.1
Vereinfache jeden Term.
Schritt 5.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.3.1.2
Dividiere durch .
Schritt 5.3.1.3
Bringe die negative Eins aus dem Nenner von .
Schritt 5.3.1.4
Schreibe als um.
Schritt 6
Vereinfache die Konstante der Integration.