Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(y-1)/(x+3) , y(-1)=0
,
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.5
Addiere und .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Das Integral von nach ist .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 3.2
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 3.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Multipliziere beide Seiten mit .
Schritt 3.5.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.3.1.2
Forme den Ausdruck um.
Schritt 3.5.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.1
Stelle die Faktoren in um.
Schritt 3.5.4.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.5.4.3
Stelle die Faktoren in um.
Schritt 3.5.4.4
Addiere zu beiden Seiten der Gleichung.
Schritt 4
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die Konstante der Integration.
Schritt 4.2
Kombiniere Konstanten mit Plus oder Minus.
Schritt 5
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Addiere und .
Schritt 6.2.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.2.3
Bringe auf die linke Seite von .
Schritt 6.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Teile jeden Ausdruck in durch .
Schritt 6.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.2
Dividiere durch .
Schritt 6.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze durch .
Schritt 7.2
Kombiniere und .
Schritt 7.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 7.4
Vereinige die Zähler über dem gemeinsamen Nenner.