Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=4/(1+x) , y(0)=3
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.2.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.5
Addiere und .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Das Integral von nach ist .
Schritt 2.3.4
Vereinfache.
Schritt 2.3.5
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Addiere und .
Schritt 4.2.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.2.2
Der natürliche Logarithmus von ist .
Schritt 4.2.2.3
Mutltipliziere mit .
Schritt 4.2.3
Addiere und .
Schritt 5
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze durch .
Schritt 5.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.2
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.