Analysis Beispiele

Löse die Differntialgleichung. (2xy^2-3y^3)dx+(7-3xy^2)dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 1.5
Stelle die Terme um.
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Subtrahiere von .
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 4
Bestimme den Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze durch .
Schritt 4.2
Ersetze durch .
Schritt 4.3
Ersetze durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Wende das Distributivgesetz an.
Schritt 4.3.2.2
Mutltipliziere mit .
Schritt 4.3.2.3
Mutltipliziere mit .
Schritt 4.3.2.4
Addiere und .
Schritt 4.3.2.5
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.5.1
Faktorisiere aus heraus.
Schritt 4.3.2.5.2
Faktorisiere aus heraus.
Schritt 4.3.2.5.3
Faktorisiere aus heraus.
Schritt 4.3.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Faktorisiere aus heraus.
Schritt 4.3.3.2
Faktorisiere aus heraus.
Schritt 4.3.3.3
Faktorisiere aus heraus.
Schritt 4.3.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Faktorisiere aus heraus.
Schritt 4.3.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.2.1
Faktorisiere aus heraus.
Schritt 4.3.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2.3
Forme den Ausdruck um.
Schritt 4.3.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.5.1
Faktorisiere aus heraus.
Schritt 4.3.5.2
Faktorisiere aus heraus.
Schritt 4.3.5.3
Faktorisiere aus heraus.
Schritt 4.3.5.4
Schreibe als um.
Schritt 4.3.5.5
Stelle die Terme um.
Schritt 4.3.5.6
Kürze den gemeinsamen Faktor.
Schritt 4.3.5.7
Forme den Ausdruck um.
Schritt 4.3.6
Mutltipliziere mit .
Schritt 4.3.7
Ersetze durch .
Schritt 4.4
Bestimme den Integrationsfaktor .
Schritt 5
Berechne das Integral .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Das Integral von nach ist .
Schritt 5.5
Vereinfache.
Schritt 5.6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.6.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.6.3
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 5.6.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6
Multipliziere beide Seiten von mit dem Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Faktorisiere aus heraus.
Schritt 6.3.2
Faktorisiere aus heraus.
Schritt 6.3.3
Faktorisiere aus heraus.
Schritt 6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2
Dividiere durch .
Schritt 6.5
Mutltipliziere mit .
Schritt 6.6
Mutltipliziere mit .
Schritt 7
Setze gleich dem Integral von .
Schritt 8
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 8.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8.4
Wende die Konstantenregel an.
Schritt 8.5
Kombiniere und .
Schritt 8.6
Vereinfache.
Schritt 9
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 10
Setze .
Schritt 11
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Differenziere nach .
Schritt 11.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 11.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.3.3
Mutltipliziere mit .
Schritt 11.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 11.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.5.1
Subtrahiere von .
Schritt 11.5.2
Stelle die Terme um.
Schritt 12
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 12.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.2.1
Zerlege den Bruch in zwei Brüche.
Schritt 12.1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 12.1.2.2.2
Dividiere durch .
Schritt 12.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.3.1
Addiere und .
Schritt 12.1.3.2
Addiere und .
Schritt 13
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Integriere beide Seiten von .
Schritt 13.2
Berechne .
Schritt 13.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13.4
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 13.5
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 13.5.2
Mutltipliziere mit .
Schritt 13.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 13.7
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.7.1
Schreibe als um.
Schritt 13.7.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.7.2.1
Mutltipliziere mit .
Schritt 13.7.2.2
Kombiniere und .
Schritt 13.7.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 14
Setze in ein.