Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Ordne die Faktoren neu an.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Kombiniere und .
Schritt 1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.2
Forme den Ausdruck um.
Schritt 1.3.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.3.1
Faktorisiere aus heraus.
Schritt 1.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.3
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Zerlege den Bruch in mehrere Brüche.
Schritt 2.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.3.1
Faktorisiere aus heraus.
Schritt 2.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.3.2.1
Potenziere mit .
Schritt 2.2.3.2.2
Faktorisiere aus heraus.
Schritt 2.2.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.4
Forme den Ausdruck um.
Schritt 2.2.3.2.5
Dividiere durch .
Schritt 2.2.4
Das Integral von nach ist .
Schritt 2.2.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.6
Vereinfache.
Schritt 2.2.7
Stelle die Terme um.
Schritt 2.3
Das Integral von nach ist .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Der genau Wert von ist .
Schritt 4.2.1.2
Addiere und .
Schritt 4.3
Vereinfache die rechte Seite.
Schritt 4.3.1
Vereinfache .
Schritt 4.3.1.1
Vereinfache jeden Term.
Schritt 4.3.1.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.1.1.2
Mutltipliziere mit .
Schritt 4.3.1.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.3.1.1.4
Der natürliche Logarithmus von ist .
Schritt 4.3.1.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze durch .
Schritt 5.2
Kombiniere und .