Analysis Beispiele

Löse die Differntialgleichung. y^2dy=x^2dx
Schritt 1
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Integriere auf beiden Seiten.
Schritt 1.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 1.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 1.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Kombiniere und .
Schritt 2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kombiniere und .
Schritt 2.2.2.1.2
Wende das Distributivgesetz an.
Schritt 2.2.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.3.2
Forme den Ausdruck um.
Schritt 2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3
Vereinfache die Konstante der Integration.