Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Ordne die Faktoren neu an.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Wandle von nach um.
Schritt 1.3.2
Schreibe mithilfe von Sinus und Kosinus um, kürze dann die gemeinsamen Faktoren.
Schritt 1.3.2.1
Stelle und um.
Schritt 1.3.2.2
Füge Klammern hinzu.
Schritt 1.3.2.3
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.3.2.4
Kürze die gemeinsamen Faktoren.
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege den Bruch in mehrere Brüche.
Schritt 2.3.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.1
Faktorisiere aus heraus.
Schritt 2.3.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.2.1
Potenziere mit .
Schritt 2.3.3.2.2
Faktorisiere aus heraus.
Schritt 2.3.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2.4
Forme den Ausdruck um.
Schritt 2.3.3.2.5
Dividiere durch .
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.7
Vereinfache.
Schritt 2.3.7.1
Vereinfache.
Schritt 2.3.7.2
Vereinfache.
Schritt 2.3.7.2.1
Kombiniere und .
Schritt 2.3.7.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.7.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.7.2.2.2
Forme den Ausdruck um.
Schritt 2.3.7.2.3
Mutltipliziere mit .
Schritt 2.3.8
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Schritt 3.1.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.1.2.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Schritt 3.1.3.1
Vereinfache jeden Term.
Schritt 3.1.3.1.1
Bringe die negative Eins aus dem Nenner von .
Schritt 3.1.3.1.2
Schreibe als um.
Schritt 3.1.3.1.3
Bringe die negative Eins aus dem Nenner von .
Schritt 3.1.3.1.4
Schreibe als um.
Schritt 3.1.3.1.5
Bringe die negative Eins aus dem Nenner von .
Schritt 3.1.3.1.6
Schreibe als um.
Schritt 3.2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 4
Vereinfache die Konstante der Integration.