Analysis Beispiele

Löse die Differntialgleichung. (1+x^2)(dy)/(dx)+y=arctan(x)
Schritt 1
Schreibe die Differentialgleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Stelle die Terme um.
Schritt 1.2
Teile jeden Ausdruck in durch .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2
Dividiere durch .
Schritt 1.4
Faktorisiere aus heraus.
Schritt 1.5
Stelle und um.
Schritt 2
Der Integrationsfaktor ist definiert durch die Formel , wobei gilt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Stelle und um.
Schritt 2.2.1.2
Schreibe als um.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 3
Multipliziere jeden Ausdruck mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Kombiniere und .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1
Faktorisiere aus heraus.
Schritt 3.5.1.2
Faktorisiere aus heraus.
Schritt 3.5.1.3
Faktorisiere aus heraus.
Schritt 3.5.2
Wende das Distributivgesetz an.
Schritt 3.5.3
Mutltipliziere mit .
Schritt 3.6
Kombiniere und .
Schritt 3.7
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1.1
Differenziere .
Schritt 7.1.1.2
Die Ableitung von nach ist .
Schritt 7.1.1.3
Stelle die Terme um.
Schritt 7.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7.2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 7.3
Das Integral von nach ist .
Schritt 7.4
Vereinfache.
Schritt 7.5
Ersetze alle durch .
Schritt 8
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.1.2
Dividiere durch .
Schritt 8.3.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.2.2
Dividiere durch .