Analysis Beispiele

Löse die Differntialgleichung. (1+x^2)dy=ydx
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.3
Forme den Ausdruck um.
Schritt 2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.3
Forme den Ausdruck um.
Schritt 3
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Integriere auf beiden Seiten.
Schritt 3.2
Das Integral von nach ist .
Schritt 3.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe als um.
Schritt 3.3.2
Das Integral von nach ist .
Schritt 3.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 4.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 4.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Schreibe die Gleichung als um.
Schritt 4.3.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 5
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe als um.
Schritt 5.2
Stelle und um.
Schritt 5.3
Kombiniere Konstanten mit Plus oder Minus.