Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Ordne die Faktoren neu an.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Kombinieren.
Schritt 1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.3.2.1
Faktorisiere aus heraus.
Schritt 1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.3
Forme den Ausdruck um.
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Sei . Dann ist . Forme um unter Vewendung von und .
Schritt 2.2.1.1
Es sei . Ermittle .
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.5
Addiere und .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.2.1
Es sei . Ermittle .
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.2.1.3
Berechne .
Schritt 2.3.2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.3.3
Mutltipliziere mit .
Schritt 2.3.2.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.2.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2.1.4.2
Addiere und .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Vereinfache.
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Bringe auf die linke Seite von .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Vereinfache den Ausdruck.
Schritt 2.3.5.1
Vereinfache.
Schritt 2.3.5.1.1
Kombiniere und .
Schritt 2.3.5.1.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.5.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.5.1.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.5.1.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.5.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.1.2.2.3
Forme den Ausdruck um.
Schritt 2.3.5.1.2.2.4
Dividiere durch .
Schritt 2.3.5.2
Wende die grundlegenden Potenzregeln an.
Schritt 2.3.5.2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.3.5.2.2
Multipliziere die Exponenten in .
Schritt 2.3.5.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2.2.2
Mutltipliziere mit .
Schritt 2.3.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.7
Vereinfache.
Schritt 2.3.7.1
Schreibe als um.
Schritt 2.3.7.2
Vereinfache.
Schritt 2.3.7.2.1
Mutltipliziere mit .
Schritt 2.3.7.2.2
Kombiniere und .
Schritt 2.3.7.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.8
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.2
Multipliziere die linke Seite aus.
Schritt 3.2.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.2.2
Der natürliche Logarithmus von ist .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Vereinfache .
Schritt 3.3.1.1
Zerlege den Bruch in zwei Brüche.
Schritt 3.3.1.2
Vereinfache jeden Term.
Schritt 3.3.1.2.1
Zerlege den Bruch in zwei Brüche.
Schritt 3.3.1.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.1.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4
Vereinfache die Konstante der Integration.