Analysis Beispiele

Löse die Differntialgleichung. (21x^2y^4-8x^3y)dx+(28x^3y^3-2x^4)dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 1.5
Stelle die Terme um.
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 2.5
Stelle die Terme um.
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.6
Vereinfache.
Schritt 5.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.1
Kombiniere und .
Schritt 5.7.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.2.1
Faktorisiere aus heraus.
Schritt 5.7.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.2.2.1
Faktorisiere aus heraus.
Schritt 5.7.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.7.2.2.3
Forme den Ausdruck um.
Schritt 5.7.2.2.4
Dividiere durch .
Schritt 5.7.3
Kombiniere und .
Schritt 5.7.4
Kombiniere und .
Schritt 5.7.5
Kombiniere und .
Schritt 5.7.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.6.1
Faktorisiere aus heraus.
Schritt 5.7.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.6.2.1
Faktorisiere aus heraus.
Schritt 5.7.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.7.6.2.3
Forme den Ausdruck um.
Schritt 5.7.6.2.4
Dividiere durch .
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Differenziere nach .
Schritt 8.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.3
Mutltipliziere mit .
Schritt 8.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.4.3
Mutltipliziere mit .
Schritt 8.5
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.6
Stelle die Terme um.
Schritt 9
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 9.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.3.1
Addiere und .
Schritt 9.1.3.2
Addiere und .
Schritt 9.1.3.3
Subtrahiere von .
Schritt 10
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Das Integral von nach ist .
Schritt 10.4
Addiere und .
Schritt 11
Setze in ein.
Schritt 12
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.