Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=1/(3(7-x)) ; with y(6)=19
; with
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Forme um.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Das Integral von nach ist .
Schritt 2.3.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Vereinfache.
Schritt 2.3.6.2
Kombiniere und .
Schritt 2.3.7
Ersetze alle durch .
Schritt 2.3.8
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Subtrahiere von .
Schritt 4.2.1.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.1.3
Der natürliche Logarithmus von ist .
Schritt 4.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.4.1
Mutltipliziere mit .
Schritt 4.2.1.4.2
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 5
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze durch .
Schritt 5.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Stelle und um.
Schritt 5.2.2
Vereinfache , indem du in den Logarithmus ziehst.