Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Schreibe die Gleichung als um.
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.3
Stelle die Terme um.
Schritt 1.2
Schreibe die Gleichung mit isolierten Koeffizienten um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Mutltipliziere mit .
Schritt 2.2.2
Wende die Konstantenregel an.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.2
Mutltipliziere mit .
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Mutltipliziere mit .
Schritt 3.5
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Schritt 7.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 7.3
Vereinfache.
Schritt 7.3.1
Kombiniere und .
Schritt 7.3.2
Kombiniere und .
Schritt 7.3.3
Kombiniere und .
Schritt 7.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 7.5.1
Es sei . Ermittle .
Schritt 7.5.1.1
Differenziere .
Schritt 7.5.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.5.1.4
Mutltipliziere mit .
Schritt 7.5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7.6
Kombiniere und .
Schritt 7.7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.8
Vereinfache.
Schritt 7.8.1
Mutltipliziere mit .
Schritt 7.8.2
Mutltipliziere mit .
Schritt 7.9
Das Integral von nach ist .
Schritt 7.10
Schreibe als um.
Schritt 7.11
Ersetze alle durch .
Schritt 7.12
Vereinfache.
Schritt 7.12.1
Vereinfache jeden Term.
Schritt 7.12.1.1
Kombiniere und .
Schritt 7.12.1.2
Kombiniere und .
Schritt 7.12.1.3
Kombiniere und .
Schritt 7.12.2
Wende das Distributivgesetz an.
Schritt 7.12.3
Kürze den gemeinsamen Faktor von .
Schritt 7.12.3.1
Faktorisiere aus heraus.
Schritt 7.12.3.2
Kürze den gemeinsamen Faktor.
Schritt 7.12.3.3
Forme den Ausdruck um.
Schritt 7.12.4
Kürze den gemeinsamen Faktor von .
Schritt 7.12.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 7.12.4.2
Kürze den gemeinsamen Faktor.
Schritt 7.12.4.3
Forme den Ausdruck um.
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Schritt 8.3.1
Vereinfache jeden Term.
Schritt 8.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 8.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.1.2
Dividiere durch .
Schritt 8.3.1.2
Kürze den gemeinsamen Faktor von .
Schritt 8.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.2.2
Dividiere durch .