Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2
Faktorisiere aus heraus.
Schritt 3.3.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.4
Forme den Ausdruck um.
Schritt 4
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4.3
Integriere die rechte Seite.
Schritt 4.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 4.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.4
Vereinfache.
Schritt 4.3.4.1
Mutltipliziere mit .
Schritt 4.3.4.2
Mutltipliziere mit .
Schritt 4.3.5
Das Integral von nach ist .
Schritt 4.3.6
Schreibe als um.
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 5
Schritt 5.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 5.2
Vereinfache beide Seiten der Gleichung.
Schritt 5.2.1
Vereinfache die linke Seite.
Schritt 5.2.1.1
Vereinfache .
Schritt 5.2.1.1.1
Kombiniere und .
Schritt 5.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Schritt 5.2.2.1
Vereinfache .
Schritt 5.2.2.1.1
Vereinfache jeden Term.
Schritt 5.2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 5.2.2.1.1.2
Multipliziere .
Schritt 5.2.2.1.1.2.1
Mutltipliziere mit .
Schritt 5.2.2.1.1.2.2
Mutltipliziere mit .
Schritt 5.2.2.1.2
Wende das Distributivgesetz an.
Schritt 5.2.2.1.3
Mutltipliziere mit .
Schritt 5.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.4
Faktorisiere aus heraus.
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.2
Faktorisiere aus heraus.
Schritt 5.4.3
Faktorisiere aus heraus.
Schritt 5.4.4
Faktorisiere aus heraus.
Schritt 5.4.5
Faktorisiere aus heraus.
Schritt 5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.