Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)+2/xy=(sin(3x))/(x^2)
Schritt 1
Der Integrationsfaktor ist definiert durch die Formel , wobei gilt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Stelle das Integral auf.
Schritt 1.2
Integriere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 1.2.2
Das Integral von nach ist .
Schritt 1.2.3
Vereinfache.
Schritt 1.3
Entferne die Konstante der Integration.
Schritt 1.4
Verwende die Potenzregel des Logarithmus.
Schritt 1.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 2
Multipliziere jeden Ausdruck mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere jeden Ausdruck mit .
Schritt 2.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kombiniere und .
Schritt 2.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.3
Forme den Ausdruck um.
Schritt 2.2.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2
Forme den Ausdruck um.
Schritt 3
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 4
Integriere auf beiden Seiten.
Schritt 5
Integriere die linke Seite.
Schritt 6
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1
Differenziere .
Schritt 6.1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.1.4
Mutltipliziere mit .
Schritt 6.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6.2
Kombiniere und .
Schritt 6.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.4
Das Integral von nach ist .
Schritt 6.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Vereinfache.
Schritt 6.5.2
Kombiniere und .
Schritt 6.6
Ersetze alle durch .
Schritt 6.7
Stelle die Terme um.
Schritt 7
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Teile jeden Ausdruck in durch .
Schritt 7.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.2
Dividiere durch .
Schritt 7.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1.1
Kombiniere und .
Schritt 7.3.1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.3.1.3
Mutltipliziere mit .
Schritt 7.3.1.4
Bringe auf die linke Seite von .