Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(1-2x)/(4x-x^2)
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Schreibe den Bruch mithilfe der Teilbruchzerlegung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.1.1.2
Faktorisiere aus heraus.
Schritt 2.3.1.1.1.3
Faktorisiere aus heraus.
Schritt 2.3.1.1.1.4
Mutltipliziere mit .
Schritt 2.3.1.1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 2.3.1.1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 2.3.1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.4.2
Forme den Ausdruck um.
Schritt 2.3.1.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.5.2
Dividiere durch .
Schritt 2.3.1.1.6
Stelle und um.
Schritt 2.3.1.1.7
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.7.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.7.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.7.1.2
Dividiere durch .
Schritt 2.3.1.1.7.2
Wende das Distributivgesetz an.
Schritt 2.3.1.1.7.3
Bringe auf die linke Seite von .
Schritt 2.3.1.1.7.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3.1.1.7.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.7.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.7.5.2
Dividiere durch .
Schritt 2.3.1.1.8
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.8.1
Bewege .
Schritt 2.3.1.1.8.2
Stelle und um.
Schritt 2.3.1.1.8.3
Bewege .
Schritt 2.3.1.2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.3.1.2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.3.1.2.3
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 2.3.1.3
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1.1
Schreibe die Gleichung als um.
Schritt 2.3.1.3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 2.3.1.3.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.3.1.2.2.1.2
Dividiere durch .
Schritt 2.3.1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.2.1
Ersetze alle in durch .
Schritt 2.3.1.3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.2.2.1
Schreibe als um.
Schritt 2.3.1.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.3.1
Schreibe die Gleichung als um.
Schritt 2.3.1.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.1.3.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.1.3.3.2.3
Kombiniere und .
Schritt 2.3.1.3.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.1.3.3.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.3.2.5.1
Mutltipliziere mit .
Schritt 2.3.1.3.3.2.5.2
Addiere und .
Schritt 2.3.1.3.3.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.1.3.4
Löse das Gleichungssystem.
Schritt 2.3.1.3.5
Liste alle Lösungen auf.
Schritt 2.3.1.4
Ersetze jeden der Teilbruchkoeffizienten in durch die Werte, die für und ermittelt wurden.
Schritt 2.3.1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.5.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.3.1.5.2
Mutltipliziere mit .
Schritt 2.3.1.5.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.3.1.5.4
Mutltipliziere mit .
Schritt 2.3.1.5.5
Bringe auf die linke Seite von .
Schritt 2.3.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.7
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.7.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.7.1.1
Forme um.
Schritt 2.3.7.1.2
Dividiere durch .
Schritt 2.3.7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.10.1
Mutltipliziere mit .
Schritt 2.3.10.2
Mutltipliziere mit .
Schritt 2.3.11
Das Integral von nach ist .
Schritt 2.3.12
Vereinfache.
Schritt 2.3.13
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.