Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Schritt 1.2.1
Vereinfache den Nenner.
Schritt 1.2.1.1
Schreibe als um.
Schritt 1.2.1.2
Schreibe als um.
Schritt 1.2.1.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.2.3
Vereinfache den Zähler.
Schritt 1.2.3.1
Schreibe als um.
Schritt 1.2.3.2
Schreibe als um.
Schritt 1.2.3.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.4
Kürze den gemeinsamen Faktor von .
Schritt 1.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2
Forme den Ausdruck um.
Schritt 1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2
Dividiere durch .
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.4
Wende die Konstantenregel an.
Schritt 2.2.5
Vereinfache.
Schritt 2.2.5.1
Kombiniere und .
Schritt 2.2.5.2
Vereinfache.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Vereinfache.
Schritt 2.3.3.2.1
Kombiniere und .
Schritt 2.3.3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.2.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2.2.2.3
Forme den Ausdruck um.
Schritt 2.3.3.2.2.2.4
Dividiere durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache jeden Term.
Schritt 4.2.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.1.1
Potenziere mit .
Schritt 4.2.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.1.2
Addiere und .
Schritt 4.2.2
Potenziere mit .
Schritt 4.3
Vereinfache .
Schritt 4.3.1
Vereinfache jeden Term.
Schritt 4.3.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.3.1.2
Mutltipliziere mit .
Schritt 4.3.1.3
Mutltipliziere mit .
Schritt 4.3.2
Addiere und .
Schritt 4.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Schritt 5.1
Ersetze durch .