Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(64xy)^(1/3)
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Wende die Produktregel auf an.
Schritt 1.1.1.2
Wende die Produktregel auf an.
Schritt 1.1.2
Schreibe als um.
Schritt 1.1.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.4.2
Forme den Ausdruck um.
Schritt 1.1.5
Berechne den Exponenten.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.3.2
Kombiniere und .
Schritt 1.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Faktorisiere aus heraus.
Schritt 1.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.3
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.2.2
Kombiniere und .
Schritt 2.2.1.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.1
Kombiniere und .
Schritt 2.3.3.2.2
Mutltipliziere mit .
Schritt 2.3.3.2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.3.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2.3.2.3
Forme den Ausdruck um.
Schritt 2.3.3.2.3.2.4
Dividiere durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kombinieren.
Schritt 3.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.4
Forme den Ausdruck um.
Schritt 3.2.1.1.5
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.6
Dividiere durch .
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2.3
Forme den Ausdruck um.
Schritt 3.2.2.1.3
Kombiniere und .
Schritt 3.3
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.1.1.2.2
Forme den Ausdruck um.
Schritt 3.4.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.1.1.3.2
Forme den Ausdruck um.
Schritt 3.4.1.2
Vereinfache.
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.