Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2
Faktorisiere aus heraus.
Schritt 3.3.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.4
Forme den Ausdruck um.
Schritt 3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Das Integral von nach ist .
Schritt 4.3
Integriere die rechte Seite.
Schritt 4.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.2
Wende die grundlegenden Potenzregeln an.
Schritt 4.3.2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 4.3.2.2
Multipliziere die Exponenten in .
Schritt 4.3.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2.2.2
Mutltipliziere mit .
Schritt 4.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4.3.4
Vereinfache die Lösung.
Schritt 4.3.4.1
Vereinfache.
Schritt 4.3.4.1.1
Kombiniere und .
Schritt 4.3.4.1.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.3.4.2
Vereinfache.
Schritt 4.3.4.3
Vereinfache.
Schritt 4.3.4.3.1
Mutltipliziere mit .
Schritt 4.3.4.3.2
Mutltipliziere mit .
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 5
Schritt 5.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 5.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 5.3
Löse nach auf.
Schritt 5.3.1
Schreibe die Gleichung als um.
Schritt 5.3.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 6
Schritt 6.1
Schreibe als um.
Schritt 6.2
Stelle und um.
Schritt 6.3
Kombiniere Konstanten mit Plus oder Minus.