Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.3
Stelle und um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Vereinfache.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Verwende die Potenzregel des Logarithmus.
Schritt 2.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 2.6
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.3
Kombiniere und .
Schritt 3.2.4
Multipliziere .
Schritt 3.2.4.1
Mutltipliziere mit .
Schritt 3.2.4.2
Potenziere mit .
Schritt 3.2.4.3
Potenziere mit .
Schritt 3.2.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.4.5
Addiere und .
Schritt 3.3
Vereinfache jeden Term.
Schritt 3.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.2
Kombiniere und .
Schritt 3.3.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.2
Forme den Ausdruck um.
Schritt 3.3.4
Kombiniere und .
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Schritt 7.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7.2
Wende die Konstantenregel an.
Schritt 7.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.4
Das Integral von nach ist .
Schritt 7.5
Vereinfache.
Schritt 8
Schritt 8.1
Kombiniere und .
Schritt 8.2
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 8.3
Multipliziere beide Seiten mit .
Schritt 8.4
Vereinfache.
Schritt 8.4.1
Vereinfache die linke Seite.
Schritt 8.4.1.1
Kürze den gemeinsamen Faktor von .
Schritt 8.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.4.1.1.2
Forme den Ausdruck um.
Schritt 8.4.2
Vereinfache die rechte Seite.
Schritt 8.4.2.1
Vereinfache .
Schritt 8.4.2.1.1
Wende das Distributivgesetz an.
Schritt 8.4.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 8.4.2.1.2.1
Bewege .
Schritt 8.4.2.1.2.2
Mutltipliziere mit .
Schritt 8.4.2.1.3
Stelle die Faktoren in um.
Schritt 8.4.2.1.4
Bewege .