Analysis Beispiele

Löse die Differntialgleichung. 4xy(dy)/(dx)=x^2+1
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Teile jeden Ausdruck in durch .
Schritt 1.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.1.2
Forme den Ausdruck um.
Schritt 1.1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.2.2
Forme den Ausdruck um.
Schritt 1.1.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.3.2
Dividiere durch .
Schritt 1.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.1
Faktorisiere aus heraus.
Schritt 1.1.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.1.2.3
Forme den Ausdruck um.
Schritt 1.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.2
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Mutltipliziere mit .
Schritt 1.2.2.2
Stelle die Faktoren von um.
Schritt 1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.3
Ordne die Faktoren neu an.
Schritt 1.4
Multipliziere beide Seiten mit .
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Faktorisiere aus heraus.
Schritt 1.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.2.3
Forme den Ausdruck um.
Schritt 1.6
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Dividiere durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
+++
Schritt 2.3.2.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
+++
Schritt 2.3.2.3
Multipliziere den neuen Bruchterm mit dem Teiler.
+++
++
Schritt 2.3.2.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
+++
--
Schritt 2.3.2.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
+++
--
Schritt 2.3.2.6
Ziehe den nächsten Term vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
+++
--
+
Schritt 2.3.2.7
Die endgültige Lösung ist der Quotient plus dem Rest geteilt durch den Divisor.
Schritt 2.3.3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.5
Das Integral von nach ist .
Schritt 2.3.6
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1.1
Kombiniere und .
Schritt 3.2.2.1.1.2
Wende das Distributivgesetz an.
Schritt 3.2.2.1.1.3
Kombinieren.
Schritt 3.2.2.1.1.4
Kombiniere und .
Schritt 3.2.2.1.1.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1.5.1
Mutltipliziere mit .
Schritt 3.2.2.1.1.5.2
Mutltipliziere mit .
Schritt 3.2.2.1.2
Wende das Distributivgesetz an.
Schritt 3.2.2.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.3.1.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.1.3
Forme den Ausdruck um.
Schritt 3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.2.3
Forme den Ausdruck um.
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Schreibe als um.
Schritt 3.4.1.2
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Kombiniere und .
Schritt 3.4.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1.1
Stelle und um.
Schritt 3.4.4.1.2
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.4.4.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.4.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.2.1
Faktorisiere aus heraus.
Schritt 3.4.4.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2.2.3
Forme den Ausdruck um.
Schritt 3.4.4.3
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 3.4.5
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.6
Kombiniere und .
Schritt 3.4.7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.8
Mutltipliziere mit .
Schritt 3.4.9
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.9.1
Faktorisiere die perfekte Potenz aus heraus.
Schritt 3.4.9.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 3.4.9.3
Ordne den Bruch um.
Schritt 3.4.10
Ziehe Terme aus der Wurzel heraus.
Schritt 3.4.11
Kombiniere und .
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.