Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=-9x^8e^(-x^9) , y(0)=2
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.1.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.2.1.2.3
Ersetze alle durch .
Schritt 2.3.2.1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.3.3
Mutltipliziere mit .
Schritt 2.3.2.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.4.1
Stelle die Faktoren von um.
Schritt 2.3.2.1.4.2
Stelle die Faktoren in um.
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.4
Wende die Konstantenregel an.
Schritt 2.3.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Vereinfache.
Schritt 2.3.5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.2.1
Kombiniere und .
Schritt 2.3.5.2.2
Mutltipliziere mit .
Schritt 2.3.5.2.3
Kombiniere und .
Schritt 2.3.5.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.2.4.2
Dividiere durch .
Schritt 2.3.5.3
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Alles, was mit potenziert wird, ist .
Schritt 4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.2
Subtrahiere von .
Schritt 5
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze durch .