Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Vereine die Terme
Schritt 1.4.1
Addiere und .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3
Die Ableitung von nach ist .
Schritt 2.4
Addiere und .
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Schritt 5.1
Wende die Konstantenregel an.
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Schritt 8.1
Differenziere nach .
Schritt 8.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.3.4
Die Ableitung von nach ist .
Schritt 8.3.5
Addiere und .
Schritt 8.3.6
Kombiniere und .
Schritt 8.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.5
Stelle die Terme um.
Schritt 9
Schritt 9.1
Löse nach auf.
Schritt 9.1.1
Bringe alle Terme, die Variablen enthalten, auf die linke Seite der Gleichung.
Schritt 9.1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 9.1.1.3.1
Subtrahiere von .
Schritt 9.1.1.3.2
Addiere und .
Schritt 9.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 10
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 10.4
Wende die Konstantenregel an.
Schritt 10.5
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 10.6
Vereinfache.
Schritt 10.6.1
Kombiniere und .
Schritt 10.6.2
Kürze den gemeinsamen Faktor von .
Schritt 10.6.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.6.2.2
Forme den Ausdruck um.
Schritt 10.7
Wende die Konstantenregel an.
Schritt 10.8
Vereinfache.
Schritt 10.9
Vereinfache.
Schritt 10.9.1
Subtrahiere von .
Schritt 10.9.2
Addiere und .
Schritt 11
Setze in ein.
Schritt 12
Schritt 12.1
Vereinfache jeden Term.
Schritt 12.1.1
Wende das Distributivgesetz an.
Schritt 12.1.2
Schreibe als um.
Schritt 12.2
Stelle die Faktoren in um.