Analysis Beispiele

Löse die Differntialgleichung. x(1+x^2)dx+y(1+y^2)dy=0
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.2
Stelle und um.
Schritt 2.2.1.3
Mutltipliziere mit .
Schritt 2.2.1.4
Potenziere mit .
Schritt 2.2.1.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.6
Addiere und .
Schritt 2.2.1.7
Stelle und um.
Schritt 2.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.5
Vereinfache.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Schreibe als um.
Schritt 2.3.6.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1
Mutltipliziere mit .
Schritt 2.3.6.2.2
Mutltipliziere mit .
Schritt 2.3.7
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.