Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(4y)/(e^x)
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kombinieren.
Schritt 1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2
Forme den Ausdruck um.
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 2.3.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2.2.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.2.1.3
Schreibe als um.
Schritt 2.3.2.2.2
Mutltipliziere mit .
Schritt 2.3.3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.1
Differenziere .
Schritt 2.3.3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.1.4
Mutltipliziere mit .
Schritt 2.3.3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Das Integral von nach ist .
Schritt 2.3.7
Vereinfache.
Schritt 2.3.8
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 4
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Stelle und um.
Schritt 4.3
Kombiniere Konstanten mit Plus oder Minus.