Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.2.1
Potenziere mit .
Schritt 1.2.2
Faktorisiere aus heraus.
Schritt 1.2.3
Faktorisiere aus heraus.
Schritt 1.2.4
Faktorisiere aus heraus.
Schritt 1.3
Multipliziere beide Seiten mit .
Schritt 1.4
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2
Forme den Ausdruck um.
Schritt 1.5
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Wende die Konstantenregel an.
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.6
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Kombiniere und .
Schritt 3.3.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Stelle und um.
Schritt 4.3
Kombiniere Konstanten mit Plus oder Minus.
Schritt 5
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 6
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Vereinfache.
Schritt 6.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 6.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.4
Addiere und .
Schritt 6.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2
Vereinfache die linke Seite.
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2
Dividiere durch .
Schritt 7
Schritt 7.1
Ersetze durch .
Schritt 7.2
Kombiniere und .
Schritt 7.3
Faktorisiere aus heraus.
Schritt 7.4
Kürze die gemeinsamen Faktoren.
Schritt 7.4.1
Multipliziere mit .
Schritt 7.4.2
Kürze den gemeinsamen Faktor.
Schritt 7.4.3
Forme den Ausdruck um.
Schritt 7.4.4
Dividiere durch .