Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Ordne die Faktoren neu an.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.3.2.1
Faktorisiere aus heraus.
Schritt 1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.3
Forme den Ausdruck um.
Schritt 1.3.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.2
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.2.1.1
Es sei . Ermittle .
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.1.1.3
Differenziere.
Schritt 2.2.1.1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.3.4
Vereinfache den Ausdruck.
Schritt 2.2.1.1.3.4.1
Addiere und .
Schritt 2.2.1.1.3.4.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.3.6
Vereinfache durch Addieren von Termen.
Schritt 2.2.1.1.3.6.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.6.2
Addiere und .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Mutltipliziere mit .
Schritt 2.2.2.2
Bringe auf die linke Seite von .
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Das Integral von nach ist .
Schritt 2.2.5
Vereinfache.
Schritt 2.2.6
Ersetze alle durch .
Schritt 2.3
Das Integral von nach ist .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.