Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Subtrahiere von .
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Mutltipliziere mit .
Schritt 2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.8
Vereinfache den Ausdruck.
Schritt 2.8.1
Addiere und .
Schritt 2.8.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5.3
Wende die Konstantenregel an.
Schritt 5.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.5
Kombiniere und .
Schritt 5.6
Vereinfache.
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Schritt 8.1
Differenziere nach .
Schritt 8.2
Differenziere unter Anwendung der Summenregel.
Schritt 8.2.1
Kombiniere und .
Schritt 8.2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.3.6
Mutltipliziere mit .
Schritt 8.3.7
Addiere und .
Schritt 8.3.8
Mutltipliziere mit .
Schritt 8.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.5
Stelle die Terme um.
Schritt 9
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 9.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 9.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 9.1.2.1
Addiere und .
Schritt 9.1.2.2
Addiere und .
Schritt 10
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10.5
Vereinfache die Lösung.
Schritt 10.5.1
Schreibe als um.
Schritt 10.5.2
Vereinfache.
Schritt 10.5.2.1
Kombiniere und .
Schritt 10.5.2.2
Kürze den gemeinsamen Faktor von .
Schritt 10.5.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.5.2.2.2
Forme den Ausdruck um.
Schritt 10.5.2.3
Mutltipliziere mit .
Schritt 11
Setze in ein.
Schritt 12
Schritt 12.1
Kombiniere und .
Schritt 12.2
Wende das Distributivgesetz an.
Schritt 12.3
Mutltipliziere mit .