Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Faktorisiere aus heraus.
Schritt 1.2
Stelle und um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Schreibe mithilfe von Sinus und Kosinus um, kürze dann die gemeinsamen Faktoren.
Schritt 3.2.1
Stelle und um.
Schritt 3.2.2
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 3.2.3
Kürze die gemeinsamen Faktoren.
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Schritt 7.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 7.2.1
Es sei . Ermittle .
Schritt 7.2.1.1
Differenziere .
Schritt 7.2.1.2
Die Ableitung von nach ist .
Schritt 7.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.4
Mutltipliziere mit .
Schritt 7.5
Das Integral von nach ist .
Schritt 7.6
Vereinfache.
Schritt 7.7
Ersetze alle durch .
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Schritt 8.3.1
Vereinfache jeden Term.
Schritt 8.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 8.3.1.2
Separiere Brüche.
Schritt 8.3.1.3
Wandle von nach um.
Schritt 8.3.1.4
Dividiere durch .