Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Schritt 1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.2
Kombiniere und .
Schritt 1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Vereinfache.
Schritt 2.3.3.2.1
Kombiniere und .
Schritt 2.3.3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.2.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2.2.2.3
Forme den Ausdruck um.
Schritt 2.3.3.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Kombiniere und .
Schritt 3.3.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Stelle und um.
Schritt 4.3
Kombiniere Konstanten mit Plus oder Minus.