Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Dividiere durch .
Schritt 1.3
Kürze den gemeinsamen Teiler von und .
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Kürze die gemeinsamen Faktoren.
Schritt 1.3.2.1
Potenziere mit .
Schritt 1.3.2.2
Faktorisiere aus heraus.
Schritt 1.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.4
Forme den Ausdruck um.
Schritt 1.3.2.5
Dividiere durch .
Schritt 1.4
Faktorisiere aus heraus.
Schritt 1.5
Stelle und um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Vereinfache.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Verwende die Potenzregel des Logarithmus.
Schritt 2.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.3
Forme den Ausdruck um.
Schritt 3.2.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.2
Subtrahiere von .
Schritt 3.4
Vereinfache .
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Wende die Konstantenregel an.
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Schritt 8.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 8.3.1.1
Potenziere mit .
Schritt 8.3.1.2
Faktorisiere aus heraus.
Schritt 8.3.1.3
Kürze die gemeinsamen Faktoren.
Schritt 8.3.1.3.1
Faktorisiere aus heraus.
Schritt 8.3.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.3.3
Forme den Ausdruck um.