Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 1.3
Entferne unnötige Klammern.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Kombiniere Brüche.
Schritt 2.2.1.1
Kombiniere und .
Schritt 2.2.1.2
Schreibe als um.
Schritt 2.2.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.2.2.1
Es sei . Ermittle .
Schritt 2.2.2.1.1
Differenziere .
Schritt 2.2.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.3
Vereinfache.
Schritt 2.2.3.1
Vereinfache.
Schritt 2.2.3.2
Mutltipliziere mit .
Schritt 2.2.3.3
Bringe auf die linke Seite von .
Schritt 2.2.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.5
Sei . Dann ist . Forme um unter Vewendung von und .
Schritt 2.2.5.1
Es sei . Ermittle .
Schritt 2.2.5.1.1
Differenziere .
Schritt 2.2.5.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.5.1.5
Addiere und .
Schritt 2.2.5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.6
Das Integral von nach ist .
Schritt 2.2.7
Vereinfache.
Schritt 2.2.8
Setze für jede eingesetzte Integrationsvariable neu ein.
Schritt 2.2.8.1
Ersetze alle durch .
Schritt 2.2.8.2
Ersetze alle durch .
Schritt 2.3
Das Integral von nach ist .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Wende das Distributivgesetz an.
Schritt 3.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.5
Löse nach auf.
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.5.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Schritt 4.1
Vereinfache die Konstante der Integration.
Schritt 4.2
Schreibe als um.
Schritt 4.3
Stelle und um.
Schritt 4.4
Kombiniere Konstanten mit Plus oder Minus.