Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Dividiere durch .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2
Dividiere durch .
Schritt 1.4
Faktorisiere aus heraus.
Schritt 1.5
Stelle und um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Vereinfache.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Verwende die Potenzregel des Logarithmus.
Schritt 2.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.3
Forme den Ausdruck um.
Schritt 3.2.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Schritt 7.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 7.1.1
Es sei . Ermittle .
Schritt 7.1.1.1
Differenziere .
Schritt 7.1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 7.1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 7.1.1.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 7.1.1.2.3
Ersetze alle durch .
Schritt 7.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.1.4
Vereinfache.
Schritt 7.1.1.4.1
Stelle die Faktoren von um.
Schritt 7.1.1.4.2
Stelle die Faktoren in um.
Schritt 7.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7.2
Wende die Konstantenregel an.
Schritt 7.3
Ersetze alle durch .
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Schritt 8.3.1
Vereinfache jeden Term.
Schritt 8.3.1.1
Kombiniere und .
Schritt 8.3.1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.3.1.3
Kombinieren.
Schritt 8.3.1.4
Mutltipliziere mit .